2DL HW 7

Taylor 12.2						
	k		O k	E k	(O k-E k)^2/E k	
	1	T<8.11	5	4.8	0.008333333	
	2	T<8.15	9	10.2	0.141176471	
	3	T<8.19	13	10.2	0.768627451	
	4	T>8.19	3	4.8	0.675	
			30	30	$4.20726 \mathrm{E}-31$	
					1.593137255	
	Since chi^2 2 n , there is no reason to doubt the Gauss distribution					
Taylor 12.4						
	Number Sixes	k	O_k	P_K	E_k	
	0	1	217	0.578703704	231.4814815	0.905961481
	1	2	148	0.347222222	138.8888889	0.597688889
	2 or 3	3	35	0.074074074	29.62962963	0.97337963
			400	1	400	2.47703
	Since chi^2 < n, there is no reason to doubt the Gauss distribution					
Taylor 12.10						
	k	O_k	P_k	E_k		
	1	12	0.16	8	2	
	2	13	0.34	17	0.941176471	
	3	11	0.34	17	2.117647059	
	4	14	0.16	8	4.5	
			1	50	9.558823529	
	Reduced chi^2=chi^2/d= 9.558823529					
	$\mathrm{D}=1$ because we have 4 bins and 3 constraints (mean and std are calculated from data, and Taylor 12.12)					
	It is less than 0.5% likely that the results are normally distributed.					
	We can reject the Gaussian hypothesis using both the 5\% and 1\% level.					
Taylor 12.12						
	1 constraint, 3 bins, so d=2					

Page 1

2DL HW 7

